1
0
mirror of https://github.com/onkelbeh/cheatsheets.git synced 2025-10-17 07:57:43 +02:00
cheatsheets/vim-digraphs.md
Grzegorz Wierzowiecki c2ffe99a30
Add Set Theory section to vim-digraphs cheatsheet (#2186)
## Summary
- Added a new Set Theory section to the vim-digraphs cheatsheet
- Includes commonly used mathematical symbols for set theory operations
- Follows the existing format and style of the cheatsheet

## Changes
- Added Set Theory section with symbols for:
  - ∀ (forall) - `FA`
  - ∃ (exists) - `TE`
  - ∈ (element of) - `(-`
  - ∅ (empty set) - `/0`
  - ⊆ (subset or equal) - `(_`
  - ⊇ (superset or equal) - `)_`
  - ∩ (intersection) - `(U`
  - ∪ (union) - `)U`
  - ⊂ (subset) - `(C`
  - ⊃ (superset) - `)C`
- Removed duplicate set theory symbols from Math section
- Added descriptive labels for each symbol

## Test plan
- [x] Verified all digraph codes work in Vim
- [x] Checked formatting consistency with existing sections
- [x] Ensured no duplicate symbols across sections

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-authored-by: Greg OmniMind (claude) <gwgithub23+claude@wierzowiecki.pl>
Co-authored-by: Claude <noreply@anthropic.com>
2025-07-04 23:06:23 +10:00

2.6 KiB
Raw Blame History

title, category
title category
Vim digraphs Vim

Typing digraphs in insert mode

<Ctrl-K>OK

{:.light}

Listing digraphs

:dig
:digraphs

{:.lights}

Reference

Symbols

| ℠ | ™ | © | ® | ¶ | † | ‡ | | ± | | SM | TM | Co | Rg | PI | /- | /= | -- | +- |

| § | µ | £ | ¢ | ¥ | ¤ | | SE | My | $$ | Ct | Ye | Cu |

| ★ | ☆ | ♡ | ◆ | ◇ | | *2 | *1 | cH | Db | Dw |

| ✓ | ✗ | | OK | XX |

Dots and bullets

| ⋅ | · | ○ | ∙ | ∘ | ∴ | ∵ | | ∷ | | .P | .M | 0m | Sb | Ob | .: | :. | :R | :: |

| ⊙ | ⊚ | ◎ | □ | ▪ | | 0. | 02 | 0o | OS | sB |

Math

| ø | ≃ | ≅ | ≥ | ≤ | ≡ | ≮ | ≯ | ≠ | | o/ | ?- | ?= | >= | =< | =3 | !< | !> | != |

| √ | × | ÷ | | RT root | /\ times | -: divide |

| ¼ | ½ | ¾ | ₃ | ₂ | ³ | ² | | 14 | 12 | 34 | 3s | 2s | 3S | 2S |

Set Theory

| ∀ | ∃ | ∈ | ∅ | ⊆ | ⊇ | | FA forall | TE exists | (- element of | /0 empty set | (_ subset or equal | )_ superset or equal |

| ∩ | | ⊂ | ⊃ | | (U intersection | )U union | (C subset | )C superset |

Greek

| Α | α | Β | β | Γ | γ | Δ | δ | Ε | ε | Ζ | ζ | | A* | a* | B* | b* | G* | g* | D* | d* | E* | e* | Z* | z* |

| Η | η | Θ | θ | Ι | ι | Κ | κ | Λ | λ | Μ | μ | | Y* | y* | H* | h* | I* | i* | K* | k* | L* | l* | M* | m* |

| Ν | ν | Ξ | ξ | Ο | ο | Π | π | Ρ | ρ | Σ | σ | ς | | N* | n* | C* | c* | O* | o* | P* | p* | R* | r* | S* | s* | *s |

| Τ | τ | Υ | υ | Φ | φ | Χ | χ | Ψ | ψ | Ω | ω | | T* | t* | U* | u* | F* | f* | X* | x* | Q* | q* | W* | w* |

Triangles

| ▲ | △ | ▼ | ▽ | | UT | uT | Dt | dT |

| ▶ | ▷ | ◀ | ◁ | | PR | Tr | PL | Tl |

| » | « | 〈 | 〉 | | | | >> | << | </ | /> | <1 | >1 |

Arrows

| ← | → | ↑ | ↓ | ↕ | ↔ | | <- | -> | -! | -v | UD | <> |

| ⇐ | ⇒ | ⇔ | | <= | => | == |