1
0
mirror of https://github.com/esphome/esphome.git synced 2024-09-20 19:34:07 +02:00
esphome/esphome/components/scd4x/scd4x.cpp
Oxan van Leeuwen 80d03a631e
Force braces around multi-line statements (#3094)
Co-authored-by: Jesse Hills <3060199+jesserockz@users.noreply.github.com>
2022-01-25 08:56:36 +13:00

297 lines
9.6 KiB
C++

#include "scd4x.h"
#include "esphome/core/hal.h"
#include "esphome/core/log.h"
namespace esphome {
namespace scd4x {
static const char *const TAG = "scd4x";
static const uint16_t SCD4X_CMD_GET_SERIAL_NUMBER = 0x3682;
static const uint16_t SCD4X_CMD_TEMPERATURE_OFFSET = 0x241d;
static const uint16_t SCD4X_CMD_ALTITUDE_COMPENSATION = 0x2427;
static const uint16_t SCD4X_CMD_AMBIENT_PRESSURE_COMPENSATION = 0xe000;
static const uint16_t SCD4X_CMD_AUTOMATIC_SELF_CALIBRATION = 0x2416;
static const uint16_t SCD4X_CMD_START_CONTINUOUS_MEASUREMENTS = 0x21b1;
static const uint16_t SCD4X_CMD_GET_DATA_READY_STATUS = 0xe4b8;
static const uint16_t SCD4X_CMD_READ_MEASUREMENT = 0xec05;
static const uint16_t SCD4X_CMD_PERFORM_FORCED_CALIBRATION = 0x362f;
static const uint16_t SCD4X_CMD_STOP_MEASUREMENTS = 0x3f86;
static const float SCD4X_TEMPERATURE_OFFSET_MULTIPLIER = (1 << 16) / 175.0f;
void SCD4XComponent::setup() {
ESP_LOGCONFIG(TAG, "Setting up scd4x...");
// the sensor needs 1000 ms to enter the idle state
this->set_timeout(1000, [this]() {
// Check if measurement is ready before reading the value
if (!this->write_command_(SCD4X_CMD_GET_DATA_READY_STATUS)) {
ESP_LOGE(TAG, "Failed to write data ready status command");
this->mark_failed();
return;
}
uint16_t raw_read_status[1];
if (!this->read_data_(raw_read_status, 1)) {
ESP_LOGE(TAG, "Failed to read data ready status");
this->mark_failed();
return;
}
uint32_t stop_measurement_delay = 0;
// In order to query the device periodic measurement must be ceased
if (raw_read_status[0]) {
ESP_LOGD(TAG, "Sensor has data available, stopping periodic measurement");
if (!this->write_command_(SCD4X_CMD_STOP_MEASUREMENTS)) {
ESP_LOGE(TAG, "Failed to stop measurements");
this->mark_failed();
return;
}
// According to the SCD4x datasheet the sensor will only respond to other commands after waiting 500 ms after
// issuing the stop_periodic_measurement command
stop_measurement_delay = 500;
}
this->set_timeout(stop_measurement_delay, [this]() {
if (!this->write_command_(SCD4X_CMD_GET_SERIAL_NUMBER)) {
ESP_LOGE(TAG, "Failed to write get serial command");
this->error_code_ = COMMUNICATION_FAILED;
this->mark_failed();
return;
}
uint16_t raw_serial_number[3];
if (!this->read_data_(raw_serial_number, 3)) {
ESP_LOGE(TAG, "Failed to read serial number");
this->error_code_ = SERIAL_NUMBER_IDENTIFICATION_FAILED;
this->mark_failed();
return;
}
ESP_LOGD(TAG, "Serial number %02d.%02d.%02d", (uint16_t(raw_serial_number[0]) >> 8),
uint16_t(raw_serial_number[0] & 0xFF), (uint16_t(raw_serial_number[1]) >> 8));
if (!this->write_command_(SCD4X_CMD_TEMPERATURE_OFFSET,
(uint16_t)(temperature_offset_ * SCD4X_TEMPERATURE_OFFSET_MULTIPLIER))) {
ESP_LOGE(TAG, "Error setting temperature offset.");
this->error_code_ = MEASUREMENT_INIT_FAILED;
this->mark_failed();
return;
}
// If pressure compensation available use it
// else use altitude
if (ambient_pressure_compensation_) {
if (!this->update_ambient_pressure_compensation_(ambient_pressure_)) {
ESP_LOGE(TAG, "Error setting ambient pressure compensation.");
this->error_code_ = MEASUREMENT_INIT_FAILED;
this->mark_failed();
return;
}
} else {
if (!this->write_command_(SCD4X_CMD_ALTITUDE_COMPENSATION, altitude_compensation_)) {
ESP_LOGE(TAG, "Error setting altitude compensation.");
this->error_code_ = MEASUREMENT_INIT_FAILED;
this->mark_failed();
return;
}
}
if (!this->write_command_(SCD4X_CMD_AUTOMATIC_SELF_CALIBRATION, enable_asc_ ? 1 : 0)) {
ESP_LOGE(TAG, "Error setting automatic self calibration.");
this->error_code_ = MEASUREMENT_INIT_FAILED;
this->mark_failed();
return;
}
// Finally start sensor measurements
if (!this->write_command_(SCD4X_CMD_START_CONTINUOUS_MEASUREMENTS)) {
ESP_LOGE(TAG, "Error starting continuous measurements.");
this->error_code_ = MEASUREMENT_INIT_FAILED;
this->mark_failed();
return;
}
initialized_ = true;
ESP_LOGD(TAG, "Sensor initialized");
});
});
}
void SCD4XComponent::dump_config() {
ESP_LOGCONFIG(TAG, "scd4x:");
LOG_I2C_DEVICE(this);
if (this->is_failed()) {
switch (this->error_code_) {
case COMMUNICATION_FAILED:
ESP_LOGW(TAG, "Communication failed! Is the sensor connected?");
break;
case MEASUREMENT_INIT_FAILED:
ESP_LOGW(TAG, "Measurement Initialization failed!");
break;
case SERIAL_NUMBER_IDENTIFICATION_FAILED:
ESP_LOGW(TAG, "Unable to read sensor firmware version");
break;
default:
ESP_LOGW(TAG, "Unknown setup error!");
break;
}
}
ESP_LOGCONFIG(TAG, " Automatic self calibration: %s", ONOFF(this->enable_asc_));
if (this->ambient_pressure_compensation_) {
ESP_LOGCONFIG(TAG, " Altitude compensation disabled");
ESP_LOGCONFIG(TAG, " Ambient pressure compensation: %dmBar", this->ambient_pressure_);
} else {
ESP_LOGCONFIG(TAG, " Ambient pressure compensation disabled");
ESP_LOGCONFIG(TAG, " Altitude compensation: %dm", this->altitude_compensation_);
}
ESP_LOGCONFIG(TAG, " Temperature offset: %.2f °C", this->temperature_offset_);
LOG_UPDATE_INTERVAL(this);
LOG_SENSOR(" ", "CO2", this->co2_sensor_);
LOG_SENSOR(" ", "Temperature", this->temperature_sensor_);
LOG_SENSOR(" ", "Humidity", this->humidity_sensor_);
}
void SCD4XComponent::update() {
if (!initialized_) {
return;
}
if (this->ambient_pressure_source_ != nullptr) {
float pressure = this->ambient_pressure_source_->state / 1000.0f;
if (!std::isnan(pressure)) {
set_ambient_pressure_compensation(this->ambient_pressure_source_->state / 1000.0f);
}
}
// Check if data is ready
if (!this->write_command_(SCD4X_CMD_GET_DATA_READY_STATUS)) {
this->status_set_warning();
return;
}
uint16_t raw_read_status[1];
if (!this->read_data_(raw_read_status, 1) || raw_read_status[0] == 0x00) {
this->status_set_warning();
ESP_LOGW(TAG, "Data not ready yet!");
return;
}
if (!this->write_command_(SCD4X_CMD_READ_MEASUREMENT)) {
ESP_LOGW(TAG, "Error reading measurement!");
this->status_set_warning();
return;
}
// Read off sensor data
uint16_t raw_data[3];
if (!this->read_data_(raw_data, 3)) {
this->status_set_warning();
return;
}
if (this->co2_sensor_ != nullptr)
this->co2_sensor_->publish_state(raw_data[0]);
if (this->temperature_sensor_ != nullptr) {
const float temperature = -45.0f + (175.0f * (raw_data[1])) / (1 << 16);
this->temperature_sensor_->publish_state(temperature);
}
if (this->humidity_sensor_ != nullptr) {
const float humidity = (100.0f * raw_data[2]) / (1 << 16);
this->humidity_sensor_->publish_state(humidity);
}
this->status_clear_warning();
}
// Note pressure in bar here. Convert to hPa
void SCD4XComponent::set_ambient_pressure_compensation(float pressure_in_bar) {
ambient_pressure_compensation_ = true;
uint16_t new_ambient_pressure = (uint16_t)(pressure_in_bar * 1000);
// remove millibar from comparison to avoid frequent updates +/- 10 millibar doesn't matter
if (initialized_ && (new_ambient_pressure / 10 != ambient_pressure_ / 10)) {
update_ambient_pressure_compensation_(new_ambient_pressure);
ambient_pressure_ = new_ambient_pressure;
} else {
ESP_LOGD(TAG, "ambient pressure compensation skipped - no change required");
}
}
bool SCD4XComponent::update_ambient_pressure_compensation_(uint16_t pressure_in_hpa) {
if (this->write_command_(SCD4X_CMD_AMBIENT_PRESSURE_COMPENSATION, pressure_in_hpa)) {
ESP_LOGD(TAG, "setting ambient pressure compensation to %d hPa", pressure_in_hpa);
return true;
} else {
ESP_LOGE(TAG, "Error setting ambient pressure compensation.");
return false;
}
}
uint8_t SCD4XComponent::sht_crc_(uint8_t data1, uint8_t data2) {
uint8_t bit;
uint8_t crc = 0xFF;
crc ^= data1;
for (bit = 8; bit > 0; --bit) {
if (crc & 0x80) {
crc = (crc << 1) ^ 0x131;
} else {
crc = (crc << 1);
}
}
crc ^= data2;
for (bit = 8; bit > 0; --bit) {
if (crc & 0x80) {
crc = (crc << 1) ^ 0x131;
} else {
crc = (crc << 1);
}
}
return crc;
}
bool SCD4XComponent::read_data_(uint16_t *data, uint8_t len) {
const uint8_t num_bytes = len * 3;
std::vector<uint8_t> buf(num_bytes);
if (this->read(buf.data(), num_bytes) != i2c::ERROR_OK) {
return false;
}
for (uint8_t i = 0; i < len; i++) {
const uint8_t j = 3 * i;
uint8_t crc = sht_crc_(buf[j], buf[j + 1]);
if (crc != buf[j + 2]) {
ESP_LOGE(TAG, "CRC8 Checksum invalid! 0x%02X != 0x%02X", buf[j + 2], crc);
return false;
}
data[i] = (buf[j] << 8) | buf[j + 1];
}
return true;
}
bool SCD4XComponent::write_command_(uint16_t command) {
const uint8_t num_bytes = 2;
uint8_t buffer[num_bytes];
buffer[0] = (command >> 8);
buffer[1] = command & 0xff;
return this->write(buffer, num_bytes) == i2c::ERROR_OK;
}
bool SCD4XComponent::write_command_(uint16_t command, uint16_t data) {
uint8_t raw[5];
raw[0] = command >> 8;
raw[1] = command & 0xFF;
raw[2] = data >> 8;
raw[3] = data & 0xFF;
raw[4] = sht_crc_(raw[2], raw[3]);
return this->write(raw, 5) == i2c::ERROR_OK;
}
} // namespace scd4x
} // namespace esphome