esphome/esphome/components/ota/ota_component.cpp

485 lines
13 KiB
C++

#include "ota_component.h"
#include "ota_backend.h"
#include "ota_backend_arduino_esp32.h"
#include "ota_backend_arduino_esp8266.h"
#include "ota_backend_esp_idf.h"
#include "esphome/core/log.h"
#include "esphome/core/application.h"
#include "esphome/core/hal.h"
#include "esphome/core/util.h"
#include "esphome/components/md5/md5.h"
#include "esphome/components/network/util.h"
#include <cerrno>
#include <cstdio>
namespace esphome {
namespace ota {
static const char *const TAG = "ota";
static const uint8_t OTA_VERSION_1_0 = 1;
std::unique_ptr<OTABackend> make_ota_backend() {
#ifdef USE_ARDUINO
#ifdef USE_ESP8266
return make_unique<ArduinoESP8266OTABackend>();
#endif // USE_ESP8266
#ifdef USE_ESP32
return make_unique<ArduinoESP32OTABackend>();
#endif // USE_ESP32
#endif // USE_ARDUINO
#ifdef USE_ESP_IDF
return make_unique<IDFOTABackend>();
#endif // USE_ESP_IDF
}
void OTAComponent::setup() {
server_ = socket::socket(AF_INET, SOCK_STREAM, 0);
if (server_ == nullptr) {
ESP_LOGW(TAG, "Could not create socket.");
this->mark_failed();
return;
}
int enable = 1;
int err = server_->setsockopt(SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(int));
if (err != 0) {
ESP_LOGW(TAG, "Socket unable to set reuseaddr: errno %d", err);
// we can still continue
}
err = server_->setblocking(false);
if (err != 0) {
ESP_LOGW(TAG, "Socket unable to set nonblocking mode: errno %d", err);
this->mark_failed();
return;
}
struct sockaddr_in server;
memset(&server, 0, sizeof(server));
server.sin_family = AF_INET;
server.sin_addr.s_addr = ESPHOME_INADDR_ANY;
server.sin_port = htons(this->port_);
err = server_->bind((struct sockaddr *) &server, sizeof(server));
if (err != 0) {
ESP_LOGW(TAG, "Socket unable to bind: errno %d", errno);
this->mark_failed();
return;
}
err = server_->listen(4);
if (err != 0) {
ESP_LOGW(TAG, "Socket unable to listen: errno %d", errno);
this->mark_failed();
return;
}
this->dump_config();
}
void OTAComponent::dump_config() {
ESP_LOGCONFIG(TAG, "Over-The-Air Updates:");
ESP_LOGCONFIG(TAG, " Address: %s:%u", network::get_use_address().c_str(), this->port_);
#ifdef USE_OTA_PASSWORD
if (!this->password_.empty()) {
ESP_LOGCONFIG(TAG, " Using Password.");
}
#endif
if (this->has_safe_mode_ && this->safe_mode_rtc_value_ > 1 &&
this->safe_mode_rtc_value_ != esphome::ota::OTAComponent::ENTER_SAFE_MODE_MAGIC) {
ESP_LOGW(TAG, "Last Boot was an unhandled reset, will proceed to safe mode in %d restarts",
this->safe_mode_num_attempts_ - this->safe_mode_rtc_value_);
}
}
void OTAComponent::loop() {
this->handle_();
if (this->has_safe_mode_ && (millis() - this->safe_mode_start_time_) > this->safe_mode_enable_time_) {
this->has_safe_mode_ = false;
// successful boot, reset counter
ESP_LOGI(TAG, "Boot seems successful, resetting boot loop counter.");
this->clean_rtc();
}
}
void OTAComponent::handle_() {
OTAResponseTypes error_code = OTA_RESPONSE_ERROR_UNKNOWN;
bool update_started = false;
size_t total = 0;
uint32_t last_progress = 0;
uint8_t buf[1024];
char *sbuf = reinterpret_cast<char *>(buf);
size_t ota_size;
uint8_t ota_features;
std::unique_ptr<OTABackend> backend;
(void) ota_features;
if (client_ == nullptr) {
struct sockaddr_storage source_addr;
socklen_t addr_len = sizeof(source_addr);
client_ = server_->accept((struct sockaddr *) &source_addr, &addr_len);
}
if (client_ == nullptr)
return;
int enable = 1;
int err = client_->setsockopt(IPPROTO_TCP, TCP_NODELAY, &enable, sizeof(int));
if (err != 0) {
ESP_LOGW(TAG, "Socket could not enable tcp nodelay, errno: %d", errno);
return;
}
ESP_LOGD(TAG, "Starting OTA Update from %s...", this->client_->getpeername().c_str());
this->status_set_warning();
#ifdef USE_OTA_STATE_CALLBACK
this->state_callback_.call(OTA_STARTED, 0.0f, 0);
#endif
if (!this->readall_(buf, 5)) {
ESP_LOGW(TAG, "Reading magic bytes failed!");
goto error;
}
// 0x6C, 0x26, 0xF7, 0x5C, 0x45
if (buf[0] != 0x6C || buf[1] != 0x26 || buf[2] != 0xF7 || buf[3] != 0x5C || buf[4] != 0x45) {
ESP_LOGW(TAG, "Magic bytes do not match! 0x%02X-0x%02X-0x%02X-0x%02X-0x%02X", buf[0], buf[1], buf[2], buf[3],
buf[4]);
error_code = OTA_RESPONSE_ERROR_MAGIC;
goto error;
}
// Send OK and version - 2 bytes
buf[0] = OTA_RESPONSE_OK;
buf[1] = OTA_VERSION_1_0;
this->writeall_(buf, 2);
// Read features - 1 byte
if (!this->readall_(buf, 1)) {
ESP_LOGW(TAG, "Reading features failed!");
goto error;
}
ota_features = buf[0]; // NOLINT
ESP_LOGV(TAG, "OTA features is 0x%02X", ota_features);
// Acknowledge header - 1 byte
buf[0] = OTA_RESPONSE_HEADER_OK;
this->writeall_(buf, 1);
#ifdef USE_OTA_PASSWORD
if (!this->password_.empty()) {
buf[0] = OTA_RESPONSE_REQUEST_AUTH;
this->writeall_(buf, 1);
md5::MD5Digest md5{};
md5.init();
sprintf(sbuf, "%08X", random_uint32());
md5.add(sbuf, 8);
md5.calculate();
md5.get_hex(sbuf);
ESP_LOGV(TAG, "Auth: Nonce is %s", sbuf);
// Send nonce, 32 bytes hex MD5
if (!this->writeall_(reinterpret_cast<uint8_t *>(sbuf), 32)) {
ESP_LOGW(TAG, "Auth: Writing nonce failed!");
goto error;
}
// prepare challenge
md5.init();
md5.add(this->password_.c_str(), this->password_.length());
// add nonce
md5.add(sbuf, 32);
// Receive cnonce, 32 bytes hex MD5
if (!this->readall_(buf, 32)) {
ESP_LOGW(TAG, "Auth: Reading cnonce failed!");
goto error;
}
sbuf[32] = '\0';
ESP_LOGV(TAG, "Auth: CNonce is %s", sbuf);
// add cnonce
md5.add(sbuf, 32);
// calculate result
md5.calculate();
md5.get_hex(sbuf);
ESP_LOGV(TAG, "Auth: Result is %s", sbuf);
// Receive result, 32 bytes hex MD5
if (!this->readall_(buf + 64, 32)) {
ESP_LOGW(TAG, "Auth: Reading response failed!");
goto error;
}
sbuf[64 + 32] = '\0';
ESP_LOGV(TAG, "Auth: Response is %s", sbuf + 64);
bool matches = true;
for (uint8_t i = 0; i < 32; i++)
matches = matches && buf[i] == buf[64 + i];
if (!matches) {
ESP_LOGW(TAG, "Auth failed! Passwords do not match!");
error_code = OTA_RESPONSE_ERROR_AUTH_INVALID;
goto error;
}
}
#endif // USE_OTA_PASSWORD
// Acknowledge auth OK - 1 byte
buf[0] = OTA_RESPONSE_AUTH_OK;
this->writeall_(buf, 1);
// Read size, 4 bytes MSB first
if (!this->readall_(buf, 4)) {
ESP_LOGW(TAG, "Reading size failed!");
goto error;
}
ota_size = 0;
for (uint8_t i = 0; i < 4; i++) {
ota_size <<= 8;
ota_size |= buf[i];
}
ESP_LOGV(TAG, "OTA size is %u bytes", ota_size);
backend = make_ota_backend();
error_code = backend->begin(ota_size);
if (error_code != OTA_RESPONSE_OK)
goto error;
update_started = true;
// Acknowledge prepare OK - 1 byte
buf[0] = OTA_RESPONSE_UPDATE_PREPARE_OK;
this->writeall_(buf, 1);
// Read binary MD5, 32 bytes
if (!this->readall_(buf, 32)) {
ESP_LOGW(TAG, "Reading binary MD5 checksum failed!");
goto error;
}
sbuf[32] = '\0';
ESP_LOGV(TAG, "Update: Binary MD5 is %s", sbuf);
backend->set_update_md5(sbuf);
// Acknowledge MD5 OK - 1 byte
buf[0] = OTA_RESPONSE_BIN_MD5_OK;
this->writeall_(buf, 1);
while (total < ota_size) {
// TODO: timeout check
size_t requested = std::min(sizeof(buf), ota_size - total);
ssize_t read = this->client_->read(buf, requested);
if (read == -1) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
delay(1);
continue;
}
ESP_LOGW(TAG, "Error receiving data for update, errno: %d", errno);
goto error;
}
error_code = backend->write(buf, read);
if (error_code != OTA_RESPONSE_OK) {
ESP_LOGW(TAG, "Error writing binary data to flash!");
goto error;
}
total += read;
uint32_t now = millis();
if (now - last_progress > 1000) {
last_progress = now;
float percentage = (total * 100.0f) / ota_size;
ESP_LOGD(TAG, "OTA in progress: %0.1f%%", percentage);
#ifdef USE_OTA_STATE_CALLBACK
this->state_callback_.call(OTA_IN_PROGRESS, percentage, 0);
#endif
// slow down OTA update to avoid getting killed by task watchdog (task_wdt)
delay(10);
}
}
// Acknowledge receive OK - 1 byte
buf[0] = OTA_RESPONSE_RECEIVE_OK;
this->writeall_(buf, 1);
error_code = backend->end();
if (error_code != OTA_RESPONSE_OK) {
ESP_LOGW(TAG, "Error ending OTA!");
goto error;
}
// Acknowledge Update end OK - 1 byte
buf[0] = OTA_RESPONSE_UPDATE_END_OK;
this->writeall_(buf, 1);
// Read ACK
if (!this->readall_(buf, 1) || buf[0] != OTA_RESPONSE_OK) {
ESP_LOGW(TAG, "Reading back acknowledgement failed!");
// do not go to error, this is not fatal
}
this->client_->close();
this->client_ = nullptr;
delay(10);
ESP_LOGI(TAG, "OTA update finished!");
this->status_clear_warning();
#ifdef USE_OTA_STATE_CALLBACK
this->state_callback_.call(OTA_COMPLETED, 100.0f, 0);
#endif
delay(100); // NOLINT
App.safe_reboot();
error:
buf[0] = static_cast<uint8_t>(error_code);
this->writeall_(buf, 1);
this->client_->close();
this->client_ = nullptr;
if (backend != nullptr && update_started) {
backend->abort();
}
this->status_momentary_error("onerror", 5000);
#ifdef USE_OTA_STATE_CALLBACK
this->state_callback_.call(OTA_ERROR, 0.0f, static_cast<uint8_t>(error_code));
#endif
}
bool OTAComponent::readall_(uint8_t *buf, size_t len) {
uint32_t start = millis();
uint32_t at = 0;
while (len - at > 0) {
uint32_t now = millis();
if (now - start > 1000) {
ESP_LOGW(TAG, "Timed out reading %d bytes of data", len);
return false;
}
ssize_t read = this->client_->read(buf + at, len - at);
if (read == -1) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
delay(1);
continue;
}
ESP_LOGW(TAG, "Failed to read %d bytes of data, errno: %d", len, errno);
return false;
} else {
at += read;
}
delay(1);
}
return true;
}
bool OTAComponent::writeall_(const uint8_t *buf, size_t len) {
uint32_t start = millis();
uint32_t at = 0;
while (len - at > 0) {
uint32_t now = millis();
if (now - start > 1000) {
ESP_LOGW(TAG, "Timed out writing %d bytes of data", len);
return false;
}
ssize_t written = this->client_->write(buf + at, len - at);
if (written == -1) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
delay(1);
continue;
}
ESP_LOGW(TAG, "Failed to write %d bytes of data, errno: %d", len, errno);
return false;
} else {
at += written;
}
delay(1);
}
return true;
}
float OTAComponent::get_setup_priority() const { return setup_priority::AFTER_WIFI; }
uint16_t OTAComponent::get_port() const { return this->port_; }
void OTAComponent::set_port(uint16_t port) { this->port_ = port; }
void OTAComponent::set_safe_mode_pending(const bool &pending) {
if (!this->has_safe_mode_)
return;
uint32_t current_rtc = this->read_rtc_();
if (pending && current_rtc != esphome::ota::OTAComponent::ENTER_SAFE_MODE_MAGIC) {
ESP_LOGI(TAG, "Device will enter safe mode on next boot.");
this->write_rtc_(esphome::ota::OTAComponent::ENTER_SAFE_MODE_MAGIC);
}
if (!pending && current_rtc == esphome::ota::OTAComponent::ENTER_SAFE_MODE_MAGIC) {
ESP_LOGI(TAG, "Safe mode pending has been cleared");
this->clean_rtc();
}
}
bool OTAComponent::get_safe_mode_pending() {
return this->has_safe_mode_ && this->read_rtc_() == esphome::ota::OTAComponent::ENTER_SAFE_MODE_MAGIC;
}
bool OTAComponent::should_enter_safe_mode(uint8_t num_attempts, uint32_t enable_time) {
this->has_safe_mode_ = true;
this->safe_mode_start_time_ = millis();
this->safe_mode_enable_time_ = enable_time;
this->safe_mode_num_attempts_ = num_attempts;
this->rtc_ = global_preferences->make_preference<uint32_t>(233825507UL, false);
this->safe_mode_rtc_value_ = this->read_rtc_();
bool is_manual_safe_mode = this->safe_mode_rtc_value_ == esphome::ota::OTAComponent::ENTER_SAFE_MODE_MAGIC;
if (is_manual_safe_mode)
ESP_LOGI(TAG, "Safe mode has been entered manually");
else
ESP_LOGCONFIG(TAG, "There have been %u suspected unsuccessful boot attempts.", this->safe_mode_rtc_value_);
if (this->safe_mode_rtc_value_ >= num_attempts || is_manual_safe_mode) {
this->clean_rtc();
if (!is_manual_safe_mode)
ESP_LOGE(TAG, "Boot loop detected. Proceeding to safe mode.");
this->status_set_error();
this->set_timeout(enable_time, []() {
ESP_LOGE(TAG, "No OTA attempt made, restarting.");
App.reboot();
});
App.setup();
ESP_LOGI(TAG, "Waiting for OTA attempt.");
return true;
} else {
// increment counter
this->write_rtc_(this->safe_mode_rtc_value_ + 1);
return false;
}
}
void OTAComponent::write_rtc_(uint32_t val) {
this->rtc_.save(&val);
global_preferences->sync();
}
uint32_t OTAComponent::read_rtc_() {
uint32_t val;
if (!this->rtc_.load(&val))
return 0;
return val;
}
void OTAComponent::clean_rtc() { this->write_rtc_(0); }
void OTAComponent::on_safe_shutdown() {
if (this->has_safe_mode_ && this->read_rtc_() != esphome::ota::OTAComponent::ENTER_SAFE_MODE_MAGIC)
this->clean_rtc();
}
#ifdef USE_OTA_STATE_CALLBACK
void OTAComponent::add_on_state_callback(std::function<void(OTAState, float, uint8_t)> &&callback) {
this->state_callback_.add(std::move(callback));
}
#endif
} // namespace ota
} // namespace esphome