esphome/esphome/core/helpers.h

413 lines
14 KiB
C++

#pragma once
#include <cmath>
#include <string>
#include <functional>
#include <vector>
#include <memory>
#include <type_traits>
#ifdef USE_ESP32_FRAMEWORK_ARDUINO
#include "esp32-hal-psram.h"
#endif
#include "esphome/core/optional.h"
#define HOT __attribute__((hot))
#define ESPDEPRECATED(msg, when) __attribute__((deprecated(msg)))
#define ALWAYS_INLINE __attribute__((always_inline))
#define PACKED __attribute__((packed))
#define xSemaphoreWait(semaphore, wait_time) \
xSemaphoreTake(semaphore, wait_time); \
xSemaphoreGive(semaphore);
namespace esphome {
/// Get the device MAC address as raw bytes, written into the provided byte array (6 bytes).
void get_mac_address_raw(uint8_t *mac);
/// Get the device MAC address as a string, in lowercase hex notation.
std::string get_mac_address();
/// Get the device MAC address as a string, in colon-separated uppercase hex notation.
std::string get_mac_address_pretty();
#ifdef USE_ESP32
/// Set the MAC address to use from the provided byte array (6 bytes).
void set_mac_address(uint8_t *mac);
#endif
std::string to_string(const std::string &val);
std::string to_string(int val);
std::string to_string(long val); // NOLINT
std::string to_string(long long val); // NOLINT
std::string to_string(unsigned val); // NOLINT
std::string to_string(unsigned long val); // NOLINT
std::string to_string(unsigned long long val); // NOLINT
std::string to_string(float val);
std::string to_string(double val);
std::string to_string(long double val);
optional<int> parse_hex(const std::string &str, size_t start, size_t length);
optional<int> parse_hex(char chr);
/// Compare string a to string b (ignoring case) and return whether they are equal.
bool str_equals_case_insensitive(const std::string &a, const std::string &b);
bool str_startswith(const std::string &full, const std::string &start);
bool str_endswith(const std::string &full, const std::string &ending);
/// snprintf-like function returning std::string with a given maximum length.
std::string __attribute__((format(printf, 1, 3))) str_snprintf(const char *fmt, size_t length, ...);
/// sprintf-like function returning std::string.
std::string __attribute__((format(printf, 1, 2))) str_sprintf(const char *fmt, ...);
class HighFrequencyLoopRequester {
public:
void start();
void stop();
static bool is_high_frequency();
protected:
bool started_{false};
};
/** Clamp the value between min and max.
*
* @param val The value.
* @param min The minimum value.
* @param max The maximum value.
* @return val clamped in between min and max.
*/
template<typename T> T clamp(T val, T min, T max);
/** Linearly interpolate between end start and end by completion.
*
* @tparam T The input/output typename.
* @param start The start value.
* @param end The end value.
* @param completion The completion. 0 is start value, 1 is end value.
* @return The linearly interpolated value.
*/
float lerp(float completion, float start, float end);
// Not all platforms we support target C++14 yet, so we can't unconditionally use std::make_unique. Provide our own
// implementation if needed, and otherwise pull std::make_unique into scope so that we have a uniform API.
#if __cplusplus >= 201402L
using std::make_unique;
#else
template<typename T, typename... Args> std::unique_ptr<T> make_unique(Args &&...args) {
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}
#endif
/// Return a random 32 bit unsigned integer.
uint32_t random_uint32();
/** Returns a random double between 0 and 1.
*
* Note: This function probably doesn't provide a truly uniform distribution.
*/
double random_double();
/// Returns a random float between 0 and 1. Essentially just casts random_double() to a float.
float random_float();
void fill_random(uint8_t *data, size_t len);
void fast_random_set_seed(uint32_t seed);
uint32_t fast_random_32();
uint16_t fast_random_16();
uint8_t fast_random_8();
/// Applies gamma correction with the provided gamma to value.
float gamma_correct(float value, float gamma);
/// Reverts gamma correction with the provided gamma to value.
float gamma_uncorrect(float value, float gamma);
/// Create a string from a value and an accuracy in decimals.
std::string value_accuracy_to_string(float value, int8_t accuracy_decimals);
/// Convert a uint64_t to a hex string
std::string uint64_to_string(uint64_t num);
/// Convert a uint32_t to a hex string
std::string uint32_to_string(uint32_t num);
uint8_t reverse_bits_8(uint8_t x);
uint16_t reverse_bits_16(uint16_t x);
uint32_t reverse_bits_32(uint32_t x);
/// Convert RGB floats (0-1) to hue (0-360) & saturation/value percentage (0-1)
void rgb_to_hsv(float red, float green, float blue, int &hue, float &saturation, float &value);
/// Convert hue (0-360) & saturation/value percentage (0-1) to RGB floats (0-1)
void hsv_to_rgb(int hue, float saturation, float value, float &red, float &green, float &blue);
/***
* An interrupt helper class.
*
* This behaves like std::lock_guard. As long as the value is visible in the current stack, all interrupts
* (including flash reads) will be disabled.
*
* Please note all functions called when the interrupt lock must be marked IRAM_ATTR (loading code into
* instruction cache is done via interrupts; disabling interrupts prevents data not already in cache from being
* pulled from flash).
*
* Example:
*
* ```cpp
* // interrupts are enabled
* {
* InterruptLock lock;
* // do something
* // interrupts are disabled
* }
* // interrupts are enabled
* ```
*/
class InterruptLock {
public:
InterruptLock();
~InterruptLock();
protected:
#ifdef USE_ESP8266
uint32_t xt_state_;
#endif
};
/// Calculate a crc8 of data with the provided data length.
uint8_t crc8(uint8_t *data, uint8_t len);
enum ParseOnOffState {
PARSE_NONE = 0,
PARSE_ON,
PARSE_OFF,
PARSE_TOGGLE,
};
ParseOnOffState parse_on_off(const char *str, const char *on = nullptr, const char *off = nullptr);
// Encode raw data to a human-readable string (for debugging)
std::string hexencode(const uint8_t *data, uint32_t len);
template<typename T> std::string hexencode(const T &data) { return hexencode(data.data(), data.size()); }
// https://stackoverflow.com/questions/7858817/unpacking-a-tuple-to-call-a-matching-function-pointer/7858971#7858971
template<int...> struct seq {}; // NOLINT
template<int N, int... S> struct gens : gens<N - 1, N - 1, S...> {}; // NOLINT
template<int... S> struct gens<0, S...> { using type = seq<S...>; }; // NOLINT
template<bool B, class T = void> using enable_if_t = typename std::enable_if<B, T>::type;
template<typename T, enable_if_t<!std::is_pointer<T>::value, int> = 0> T id(T value) { return value; }
template<typename T, enable_if_t<std::is_pointer<T *>::value, int> = 0> T &id(T *value) { return *value; }
template<typename... X> class CallbackManager;
/** Simple helper class to allow having multiple subscribers to a signal.
*
* @tparam Ts The arguments for the callback, wrapped in void().
*/
template<typename... Ts> class CallbackManager<void(Ts...)> {
public:
/// Add a callback to the internal callback list.
void add(std::function<void(Ts...)> &&callback) { this->callbacks_.push_back(std::move(callback)); }
/// Call all callbacks in this manager.
void call(Ts... args) {
for (auto &cb : this->callbacks_)
cb(args...);
}
protected:
std::vector<std::function<void(Ts...)>> callbacks_;
};
// https://stackoverflow.com/a/37161919/8924614
template<class T, class... Args>
struct is_callable // NOLINT
{
template<class U> static auto test(U *p) -> decltype((*p)(std::declval<Args>()...), void(), std::true_type());
template<class U> static auto test(...) -> decltype(std::false_type());
static constexpr auto value = decltype(test<T>(nullptr))::value; // NOLINT
};
void delay_microseconds_safe(uint32_t us);
template<typename T> class Deduplicator {
public:
bool next(T value) {
if (this->has_value_) {
if (this->last_value_ == value)
return false;
}
this->has_value_ = true;
this->last_value_ = value;
return true;
}
bool has_value() const { return this->has_value_; }
protected:
bool has_value_{false};
T last_value_{};
};
template<typename T> class Parented {
public:
Parented() {}
Parented(T *parent) : parent_(parent) {}
T *get_parent() const { return parent_; }
void set_parent(T *parent) { parent_ = parent; }
protected:
T *parent_{nullptr};
};
uint32_t fnv1_hash(const std::string &str);
template<typename T> T *new_buffer(size_t length) {
T *buffer;
#ifdef USE_ESP32_FRAMEWORK_ARDUINO
if (psramFound()) {
buffer = (T *) ps_malloc(length);
} else {
buffer = new T[length]; // NOLINT(cppcoreguidelines-owning-memory)
}
#else
buffer = new T[length]; // NOLINT(cppcoreguidelines-owning-memory)
#endif
return buffer;
}
// ---------------------------------------------------------------------------------------------------------------------
/// @name STL backports
///@{
// std::byteswap is from C++23 and technically should be a template, but this will do for now.
constexpr uint8_t byteswap(uint8_t n) { return n; }
constexpr uint16_t byteswap(uint16_t n) { return __builtin_bswap16(n); }
constexpr uint32_t byteswap(uint32_t n) { return __builtin_bswap32(n); }
constexpr uint64_t byteswap(uint64_t n) { return __builtin_bswap64(n); }
///@}
/// @name Bit manipulation
///@{
/// Encode a 16-bit value given the most and least significant byte.
constexpr uint16_t encode_uint16(uint8_t msb, uint8_t lsb) {
return (static_cast<uint16_t>(msb) << 8) | (static_cast<uint16_t>(lsb));
}
/// Encode a 32-bit value given four bytes in most to least significant byte order.
constexpr uint32_t encode_uint32(uint8_t byte1, uint8_t byte2, uint8_t byte3, uint8_t byte4) {
return (static_cast<uint32_t>(byte1) << 24) | (static_cast<uint32_t>(byte2) << 16) |
(static_cast<uint32_t>(byte3) << 8) | (static_cast<uint32_t>(byte4));
}
/// Encode a value from its constituent bytes (from most to least significant) in an array with length sizeof(T).
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0> inline T encode_value(const uint8_t *bytes) {
T val = 0;
for (size_t i = 0; i < sizeof(T); i++) {
val <<= 8;
val |= bytes[i];
}
return val;
}
/// Encode a value from its constituent bytes (from most to least significant) in an std::array with length sizeof(T).
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0>
inline T encode_value(const std::array<uint8_t, sizeof(T)> bytes) {
return encode_value<T>(bytes.data());
}
/// Decode a value into its constituent bytes (from most to least significant).
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0>
inline std::array<uint8_t, sizeof(T)> decode_value(T val) {
std::array<uint8_t, sizeof(T)> ret{};
for (size_t i = sizeof(T); i > 0; i--) {
ret[i - 1] = val & 0xFF;
val >>= 8;
}
return ret;
}
/// Convert a value between host byte order and big endian (most significant byte first) order.
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0> constexpr T convert_big_endian(T val) {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
return byteswap(val);
#else
return val;
#endif
}
///@}
/// @name Strings
///@{
/// Truncate a string to a specific length.
std::string str_truncate(const std::string &str, size_t length);
/// Convert the string to snake case (lowercase with underscores).
std::string str_snake_case(const std::string &str);
/// Sanitizes the input string by removing all characters but alphanumerics, dashes and underscores.
std::string str_sanitize(const std::string &str);
///@}
/// @name Parsing & formatting
///@{
/// Parse an unsigned decimal number (requires null-terminated string).
template<typename T, enable_if_t<(std::is_integral<T>::value && std::is_unsigned<T>::value), int> = 0>
optional<T> parse_number(const char *str, size_t len) {
char *end = nullptr;
unsigned long value = ::strtoul(str, &end, 10); // NOLINT(google-runtime-int)
if (end == str || *end != '\0' || value > std::numeric_limits<T>::max())
return {};
return value;
}
/// Parse an unsigned decimal number.
template<typename T, enable_if_t<(std::is_integral<T>::value && std::is_unsigned<T>::value), int> = 0>
optional<T> parse_number(const std::string &str) {
return parse_number<T>(str.c_str(), str.length() + 1);
}
/// Parse a signed decimal number (requires null-terminated string).
template<typename T, enable_if_t<(std::is_integral<T>::value && std::is_signed<T>::value), int> = 0>
optional<T> parse_number(const char *str, size_t len) {
char *end = nullptr;
signed long value = ::strtol(str, &end, 10); // NOLINT(google-runtime-int)
if (end == str || *end != '\0' || value < std::numeric_limits<T>::min() || value > std::numeric_limits<T>::max())
return {};
return value;
}
/// Parse a signed decimal number.
template<typename T, enable_if_t<(std::is_integral<T>::value && std::is_signed<T>::value), int> = 0>
optional<T> parse_number(const std::string &str) {
return parse_number<T>(str.c_str(), str.length() + 1);
}
/// Parse a decimal floating-point number (requires null-terminated string).
template<typename T, enable_if_t<(std::is_same<T, float>::value), int> = 0>
optional<T> parse_number(const char *str, size_t len) {
char *end = nullptr;
float value = ::strtof(str, &end);
if (end == str || *end != '\0' || value == HUGE_VALF)
return {};
return value;
}
/// Parse a decimal floating-point number.
template<typename T, enable_if_t<(std::is_same<T, float>::value), int> = 0>
optional<T> parse_number(const std::string &str) {
return parse_number<T>(str.c_str(), str.length() + 1);
}
///@}
} // namespace esphome