dev-python/pandas: treeclean

Signed-off-by: Andreas Billmeier <b@edevau.net>
This commit is contained in:
Andreas Billmeier 2023-11-01 23:08:04 +01:00 committed by Andreas Billmeier
parent 1b83e37c6f
commit df89b302e5
Signed by: onkelbeh
GPG Key ID: E6DB12C8C550F3C0
4 changed files with 2 additions and 218 deletions

View File

@ -612,14 +612,14 @@ A daily compile test is run at Github with Python 3.9 to catch general faults. E
## Licenses
This repository itself is released under GPL-3 (like most Gentoo repositories), all work on the depending components under the licenses they came from. Perhaps you came here because I filed an issue at your component about a bad or missing license. It is easy to [assign a license](https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/adding-a-license-to-a-repository). During cleanups and license investigations I have been asked often which license to choose. I am not a lawyer, but I can offer the following table, counted over this repository, perhaps this helps your decision. If a package has more than one license listed, all of them are counted.
There are 1925 Ebuilds in total, 1914 of them have in total 1932 (40 different) licenses assigned.
There are 1924 Ebuilds in total, 1913 of them have in total 1931 (40 different) licenses assigned.
|License| Ebuilds using it|
|-------|-----|
|MIT|1104|
|Apache-2.0|420|
|GPL-3|123|
|BSD|106|
|BSD|105|
|GPL-2|27|
|LGPL-3|25|
|all-rights-reserved|15|

View File

@ -1,3 +0,0 @@
DIST pandas-1.4.3.tar.gz 4941520 BLAKE2B b134f7c04c2478b7105214ed62e9adcaed98ffb4179a785f7887850d66702bf0f185d60a3da6de6226742529008bac614b494453dca929e477960ff3b43ef93d SHA512 d8d7575ce2b813361641d4e438844e03ed79179f5dcc56f2e4923bfeceab6f825a9bcc419e9492ee5e0272ea7c9bb9eeab6a0e242a880a87999df2a492436d8e
EBUILD pandas-1.4.3.ebuild 6415 BLAKE2B 301b741131740c4590bc92aceb84dae270a1324523116eecb2e62c247ab81c1728998d75f15b6990a6f72fb1c50be7b23bd3a45fe1a32289d736f3f70f799280 SHA512 bf4a88fe60608cfa29b709681b708a0097c21effb4574f34ff56e3778e71e128c6ce0f40df2dc2af81b6062c3ec38ed548d3eacd0a841e03ccf95e65b9899c73
MISC metadata.xml 526 BLAKE2B 790c25e8a743b8298b3d7924608d7a6b1a52774275d4338f5aabd615772b2317d5b43b43f35b5fd5a5819892cccc9d5d72625e220b13ad5825c95d81295adab9 SHA512 958754b9734793590b9588fb1494195750730df09d740284b111170c4fa9b925e0a535197d7f11297dbe589c3a15f68c7f41095056766b836905b3d98de1e1d4

View File

@ -1,16 +0,0 @@
<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE pkgmetadata SYSTEM "http://www.gentoo.org/dtd/metadata.dtd">
<pkgmetadata>
<maintainer type="project">
<email>b@edevau.net</email>
<name>Andreas Billmeier</name>
</maintainer>
<upstream>
<remote-id type="pypi">pandas</remote-id>
<remote-id type="github">pandas-dev/pandas</remote-id>
<maintainer status="unknown">
<email>pandas-dev@python.org</email>
<name>The Pandas Development Team</name>
</maintainer>
</upstream>
</pkgmetadata>

View File

@ -1,197 +0,0 @@
# Copyright 1999-2022 Gentoo Authors
# Distributed under the terms of the GNU General Public License v2
EAPI=8
DISTUTILS_USE_PEP517=setuptools
PYTHON_COMPAT=( python3_{8..10} )
PYTHON_REQ_USE="threads(+)"
VIRTUALX_REQUIRED="manual"
inherit distutils-r1 multiprocessing optfeature virtualx
DESCRIPTION="Powerful data structures for data analysis and statistics"
HOMEPAGE="https://pandas.pydata.org/
https://github.com/pandas-dev/pandas/"
SRC_URI="
https://github.com/pandas-dev/pandas/releases/download/v${PV}/${P}.tar.gz
"
S="${WORKDIR}/${P/_/}"
SLOT="0"
LICENSE="BSD"
KEYWORDS="amd64 arm arm64 ~hppa ~ia64 ppc ppc64 ~riscv ~s390 ~sparc x86"
IUSE="doc full-support minimal test X"
RESTRICT="!test? ( test )"
RECOMMENDED_DEPEND="
>=dev-python/bottleneck-1.2.1[${PYTHON_USEDEP}]
>=dev-python/numexpr-2.7.0[${PYTHON_USEDEP}]
"
# TODO: add pandas-gbq to the tree
OPTIONAL_DEPEND="
dev-python/beautifulsoup4[${PYTHON_USEDEP}]
dev-python/blosc[${PYTHON_USEDEP}]
|| (
dev-python/html5lib[${PYTHON_USEDEP}]
dev-python/lxml[${PYTHON_USEDEP}]
)
dev-python/jinja[${PYTHON_USEDEP}]
dev-python/matplotlib[${PYTHON_USEDEP}]
|| (
dev-python/openpyxl[${PYTHON_USEDEP}]
dev-python/xlsxwriter[${PYTHON_USEDEP}]
)
>=dev-python/pytables-3.2.1[${PYTHON_USEDEP}]
>=dev-python/xarray-0.12.3[${PYTHON_USEDEP}]
>=dev-python/sqlalchemy-1.3.0[${PYTHON_USEDEP}]
>=dev-python/xlrd-1.2.0[${PYTHON_USEDEP}]
>=dev-python/xlwt-1.3.0[${PYTHON_USEDEP}]
!hppa? (
dev-python/statsmodels[${PYTHON_USEDEP}]
>=dev-python/scipy-1.1[${PYTHON_USEDEP}]
)
X? (
|| (
dev-python/PyQt5[${PYTHON_USEDEP}]
x11-misc/xclip
x11-misc/xsel
)
)
"
COMMON_DEPEND="
>=dev-python/numpy-1.21.0[${PYTHON_USEDEP}]
>=dev-python/python-dateutil-2.8.1-r3[${PYTHON_USEDEP}]
>=dev-python/pytz-2020.1[${PYTHON_USEDEP}]
"
DEPEND="
${COMMON_DEPEND}
>=dev-python/cython-0.29.24[${PYTHON_USEDEP}]
doc? (
${VIRTUALX_DEPEND}
app-text/pandoc
dev-python/beautifulsoup4[${PYTHON_USEDEP}]
dev-python/html5lib[${PYTHON_USEDEP}]
dev-python/ipython[${PYTHON_USEDEP}]
dev-python/lxml[${PYTHON_USEDEP}]
dev-python/matplotlib[${PYTHON_USEDEP}]
dev-python/nbsphinx[${PYTHON_USEDEP}]
>=dev-python/numpydoc-0.9.1[${PYTHON_USEDEP}]
>=dev-python/openpyxl-1.6.1[${PYTHON_USEDEP}]
>=dev-python/pytables-3.0.0[${PYTHON_USEDEP}]
dev-python/pytz[${PYTHON_USEDEP}]
dev-python/rpy[${PYTHON_USEDEP}]
dev-python/sphinx[${PYTHON_USEDEP}]
dev-python/xlrd[${PYTHON_USEDEP}]
dev-python/xlwt[${PYTHON_USEDEP}]
dev-python/scipy[${PYTHON_USEDEP}]
x11-misc/xclip
)
test? (
${VIRTUALX_DEPEND}
${RECOMMENDED_DEPEND}
${OPTIONAL_DEPEND}
dev-python/beautifulsoup4[${PYTHON_USEDEP}]
>=dev-python/hypothesis-5.5.3[${PYTHON_USEDEP}]
dev-python/openpyxl[${PYTHON_USEDEP}]
dev-python/pymysql[${PYTHON_USEDEP}]
>=dev-python/pytest-6[${PYTHON_USEDEP}]
>=dev-python/pytest-xdist-1.31[${PYTHON_USEDEP}]
dev-python/psycopg:2[${PYTHON_USEDEP}]
dev-python/xlsxwriter[${PYTHON_USEDEP}]
x11-misc/xclip
x11-misc/xsel
)
"
# dev-python/statsmodels invokes a circular dep
# hence rm from doc? ( ), again
RDEPEND="
${COMMON_DEPEND}
!minimal? ( ${RECOMMENDED_DEPEND} )
full-support? ( ${OPTIONAL_DEPEND} )
"
python_prepare_all() {
# Prevent un-needed download during build
sed -e "/^ 'sphinx.ext.intersphinx',/d" \
-i doc/source/conf.py || die
# requires package installed
sed -e '/extra_compile_args =/s:"-Werror"::' \
-i setup.py || die
distutils-r1_python_prepare_all
}
python_compile() {
distutils-r1_python_compile -j1
}
python_compile_all() {
# To build docs the need be located in $BUILD_DIR,
# else PYTHONPATH points to unusable modules.
if use doc; then
cd "${BUILD_DIR}"/lib || die
cp -ar "${S}"/doc . && cd doc || die
LANG=C PYTHONPATH=. virtx ${EPYTHON} make.py html
fi
}
src_test() {
virtx distutils-r1_src_test
}
python_test() {
local EPYTEST_DESELECT=(
# test for rounding errors, fails if we have better precision
# e.g. on amd64 with FMA or on arm64
# https://github.com/pandas-dev/pandas/issues/38921
pandas/tests/window/test_rolling.py::test_rolling_var_numerical_issues
# TODO
pandas/tests/api/test_api.py::TestTesting::test_util_testing_deprecated
pandas/tests/api/test_api.py::TestTesting::test_util_testing_deprecated_direct
# TODO: these require a running db server
pandas/tests/io/test_sql.py::TestMySQLAlchemy
pandas/tests/io/test_sql.py::TestMySQLAlchemyConn
pandas/tests/io/test_sql.py::TestPostgreSQLAlchemy
pandas/tests/io/test_sql.py::TestPostgreSQLAlchemyConn
)
local -x LC_ALL=C.UTF-8
cd "${BUILD_DIR}/install$(python_get_sitedir)" || die
"${EPYTHON}" -c "import pandas; pandas.show_versions()" || die
epytest pandas --skip-slow --skip-network -m "not single" \
-n "$(makeopts_jobs "${MAKEOPTS}" "$(get_nproc)")" ||
die "Tests failed with ${EPYTHON}"
}
python_install_all() {
if use doc; then
dodoc -r "${BUILD_DIR}"/lib/doc/build/html
einfo "An initial build of docs is absent of references to statsmodels"
einfo "due to circular dependency. To have them included, emerge"
einfo "statsmodels next and re-emerge pandas with USE doc"
fi
distutils-r1_python_install_all
}
pkg_postinst() {
optfeature "accelerating certain types of NaN evaluations, using specialized cython routines to achieve large speedups." dev-python/bottleneck
optfeature "accelerating certain numerical operations, using multiple cores as well as smart chunking and caching to achieve large speedups" ">=dev-python/numexpr-2.1"
optfeature "needed for pandas.io.html.read_html" dev-python/beautifulsoup4 dev-python/html5lib dev-python/lxml
optfeature "for msgpack compression using blosc" dev-python/blosc
optfeature "Template engine for conditional HTML formatting" dev-python/jinja
optfeature "Plotting support" dev-python/matplotlib
optfeature "Needed for Excel I/O" ">=dev-python/openpyxl-3.0.0" dev-python/xlsxwriter dev-python/xlrd dev-python/xlwt
optfeature "necessary for HDF5-based storage" ">=dev-python/pytables-3.2.1"
optfeature "R I/O support" dev-python/rpy
optfeature "Needed for parts of pandas.stats" dev-python/statsmodels
optfeature "SQL database support" ">=dev-python/sqlalchemy-1.3.0"
optfeature "miscellaneous statistical functions" dev-python/scipy
optfeature "necessary to use pandas.io.clipboard.read_clipboard support" dev-python/PyQt5 dev-python/pygtk x11-misc/xclip x11-misc/xsel
}