ESPHome/esphome/components/sgp40/sgp40.cpp

316 lines
9.1 KiB
C++

#include "esphome/core/log.h"
#include "sgp40.h"
namespace esphome {
namespace sgp40 {
static const char *const TAG = "sgp40";
void SGP40Component::setup() {
ESP_LOGCONFIG(TAG, "Setting up SGP40...");
// Serial Number identification
if (!this->write_command_(SGP40_CMD_GET_SERIAL_ID)) {
this->error_code_ = COMMUNICATION_FAILED;
this->mark_failed();
return;
}
uint16_t raw_serial_number[3];
if (!this->read_data_(raw_serial_number, 3)) {
this->mark_failed();
return;
}
this->serial_number_ = (uint64_t(raw_serial_number[0]) << 24) | (uint64_t(raw_serial_number[1]) << 16) |
(uint64_t(raw_serial_number[2]));
ESP_LOGD(TAG, "Serial Number: %" PRIu64, this->serial_number_);
// Featureset identification for future use
if (!this->write_command_(SGP40_CMD_GET_FEATURESET)) {
ESP_LOGD(TAG, "raw_featureset write_command_ failed");
this->mark_failed();
return;
}
uint16_t raw_featureset[1];
if (!this->read_data_(raw_featureset, 1)) {
ESP_LOGD(TAG, "raw_featureset read_data_ failed");
this->mark_failed();
return;
}
this->featureset_ = raw_featureset[0];
if ((this->featureset_ & 0x1FF) != SGP40_FEATURESET) {
ESP_LOGD(TAG, "Product feature set failed 0x%0X , expecting 0x%0X", uint16_t(this->featureset_ & 0x1FF),
SGP40_FEATURESET);
this->mark_failed();
return;
}
ESP_LOGD(TAG, "Product version: 0x%0X", uint16_t(this->featureset_ & 0x1FF));
voc_algorithm_init(&this->voc_algorithm_params_);
if (this->store_baseline_) {
// Hash with compilation time
// This ensures the baseline storage is cleared after OTA
uint32_t hash = fnv1_hash(App.get_compilation_time());
this->pref_ = global_preferences.make_preference<SGP40Baselines>(hash, true);
if (this->pref_.load(&this->baselines_storage_)) {
this->state0_ = this->baselines_storage_.state0;
this->state1_ = this->baselines_storage_.state1;
ESP_LOGI(TAG, "Loaded VOC baseline state0: 0x%04X, state1: 0x%04X", this->baselines_storage_.state0,
baselines_storage_.state1);
}
// Initialize storage timestamp
this->seconds_since_last_store_ = 0;
if (this->baselines_storage_.state0 > 0 && this->baselines_storage_.state1 > 0) {
ESP_LOGI(TAG, "Setting VOC baseline from save state0: 0x%04X, state1: 0x%04X", this->baselines_storage_.state0,
baselines_storage_.state1);
voc_algorithm_set_states(&this->voc_algorithm_params_, this->baselines_storage_.state0,
this->baselines_storage_.state1);
}
}
this->self_test_();
}
void SGP40Component::self_test_() {
ESP_LOGD(TAG, "selfTest started");
if (!this->write_command_(SGP40_CMD_SELF_TEST)) {
this->error_code_ = COMMUNICATION_FAILED;
ESP_LOGD(TAG, "selfTest communicatin failed");
this->mark_failed();
}
this->set_timeout(250, [this]() {
uint16_t reply[1];
if (!this->read_data_(reply, 1)) {
ESP_LOGD(TAG, "selfTest read_data_ failed");
this->mark_failed();
return;
}
if (reply[0] == 0xD400) {
ESP_LOGD(TAG, "selfTest completed");
return;
}
ESP_LOGD(TAG, "selfTest failed");
this->mark_failed();
});
}
/**
* @brief Combined the measured gasses, temperature, and humidity
* to calculate the VOC Index
*
* @param temperature The measured temperature in degrees C
* @param humidity The measured relative humidity in % rH
* @return int32_t The VOC Index
*/
int32_t SGP40Component::measure_voc_index_() {
int32_t voc_index;
uint16_t sraw = measure_raw_();
if (sraw == UINT16_MAX)
return UINT16_MAX;
this->status_clear_warning();
voc_algorithm_process(&voc_algorithm_params_, sraw, &voc_index);
// Store baselines after defined interval or if the difference between current and stored baseline becomes too
// much
if (this->store_baseline_ && this->seconds_since_last_store_ > SHORTEST_BASELINE_STORE_INTERVAL) {
voc_algorithm_get_states(&voc_algorithm_params_, &this->state0_, &this->state1_);
if (abs(this->baselines_storage_.state0 - this->state0_) > MAXIMUM_STORAGE_DIFF ||
abs(this->baselines_storage_.state1 - this->state1_) > MAXIMUM_STORAGE_DIFF) {
this->seconds_since_last_store_ = 0;
this->baselines_storage_.state0 = this->state0_;
this->baselines_storage_.state1 = this->state1_;
if (this->pref_.save(&this->baselines_storage_)) {
ESP_LOGI(TAG, "Stored VOC baseline state0: 0x%04X ,state1: 0x%04X", this->baselines_storage_.state0,
baselines_storage_.state1);
} else {
ESP_LOGW(TAG, "Could not store VOC baselines");
}
}
}
return voc_index;
}
/**
* @brief Return the raw gas measurement
*
* @param temperature The measured temperature in degrees C
* @param humidity The measured relative humidity in % rH
* @return uint16_t The current raw gas measurement
*/
uint16_t SGP40Component::measure_raw_() {
float humidity = NAN;
if (this->humidity_sensor_ != nullptr) {
humidity = this->humidity_sensor_->state;
}
if (isnan(humidity) || humidity < 0.0f || humidity > 100.0f) {
humidity = 50;
}
float temperature = NAN;
if (this->temperature_sensor_ != nullptr) {
temperature = float(this->temperature_sensor_->state);
}
if (isnan(temperature) || temperature < -40.0f || temperature > 85.0f) {
temperature = 25;
}
uint8_t command[8];
command[0] = 0x26;
command[1] = 0x0F;
uint16_t rhticks = llround((uint16_t)((humidity * 65535) / 100));
command[2] = rhticks >> 8;
command[3] = rhticks & 0xFF;
command[4] = generate_crc_(command + 2, 2);
uint16_t tempticks = (uint16_t)(((temperature + 45) * 65535) / 175);
command[5] = tempticks >> 8;
command[6] = tempticks & 0xFF;
command[7] = generate_crc_(command + 5, 2);
if (!this->write_bytes_raw(command, 8)) {
this->status_set_warning();
ESP_LOGD(TAG, "write_bytes_raw error");
return UINT16_MAX;
}
delay(250); // NOLINT
uint16_t raw_data[1];
if (!this->read_data_(raw_data, 1)) {
this->status_set_warning();
ESP_LOGD(TAG, "read_data_ error");
return UINT16_MAX;
}
return raw_data[0];
}
uint8_t SGP40Component::generate_crc_(const uint8_t *data, uint8_t datalen) {
// calculates 8-Bit checksum with given polynomial
uint8_t crc = SGP40_CRC8_INIT;
for (uint8_t i = 0; i < datalen; i++) {
crc ^= data[i];
for (uint8_t b = 0; b < 8; b++) {
if (crc & 0x80)
crc = (crc << 1) ^ SGP40_CRC8_POLYNOMIAL;
else
crc <<= 1;
}
}
return crc;
}
void SGP40Component::update() {
this->seconds_since_last_store_ += this->update_interval_ / 1000;
uint32_t voc_index = this->measure_voc_index_();
if (this->samples_read_ < this->samples_to_stabalize_) {
this->samples_read_++;
ESP_LOGD(TAG, "Sensor has not collected enough samples yet. (%d/%d) VOC index is: %u", this->samples_read_,
this->samples_to_stabalize_, voc_index);
return;
}
if (voc_index != UINT16_MAX) {
this->status_clear_warning();
this->publish_state(voc_index);
} else {
this->status_set_warning();
}
}
void SGP40Component::dump_config() {
ESP_LOGCONFIG(TAG, "SGP40:");
LOG_I2C_DEVICE(this);
if (this->is_failed()) {
switch (this->error_code_) {
case COMMUNICATION_FAILED:
ESP_LOGW(TAG, "Communication failed! Is the sensor connected?");
break;
default:
ESP_LOGW(TAG, "Unknown setup error!");
break;
}
} else {
ESP_LOGCONFIG(TAG, " Serial number: %" PRIu64, this->serial_number_);
ESP_LOGCONFIG(TAG, " Minimum Samples: %f", VOC_ALGORITHM_INITIAL_BLACKOUT);
}
LOG_UPDATE_INTERVAL(this);
if (this->humidity_sensor_ != nullptr && this->temperature_sensor_ != nullptr) {
ESP_LOGCONFIG(TAG, " Compensation:");
LOG_SENSOR(" ", "Temperature Source:", this->temperature_sensor_);
LOG_SENSOR(" ", "Humidity Source:", this->humidity_sensor_);
} else {
ESP_LOGCONFIG(TAG, " Compensation: No source configured");
}
}
bool SGP40Component::write_command_(uint16_t command) {
// Warning ugly, trick the I2Ccomponent base by setting register to the first 8 bit.
return this->write_byte(command >> 8, command & 0xFF);
}
uint8_t SGP40Component::sht_crc_(uint8_t data1, uint8_t data2) {
uint8_t bit;
uint8_t crc = 0xFF;
crc ^= data1;
for (bit = 8; bit > 0; --bit) {
if (crc & 0x80)
crc = (crc << 1) ^ 0x131;
else
crc = (crc << 1);
}
crc ^= data2;
for (bit = 8; bit > 0; --bit) {
if (crc & 0x80)
crc = (crc << 1) ^ 0x131;
else
crc = (crc << 1);
}
return crc;
}
bool SGP40Component::read_data_(uint16_t *data, uint8_t len) {
const uint8_t num_bytes = len * 3;
std::vector<uint8_t> buf(num_bytes);
if (!this->parent_->raw_receive(this->address_, buf.data(), num_bytes)) {
return false;
}
for (uint8_t i = 0; i < len; i++) {
const uint8_t j = 3 * i;
uint8_t crc = sht_crc_(buf[j], buf[j + 1]);
if (crc != buf[j + 2]) {
ESP_LOGE(TAG, "CRC8 Checksum invalid! 0x%02X != 0x%02X", buf[j + 2], crc);
return false;
}
data[i] = (buf[j] << 8) | buf[j + 1];
}
return true;
}
} // namespace sgp40
} // namespace esphome