// ENS210 relative humidity and temperature sensor with I2C interface from ScioSense // // Datasheet: https://www.sciosense.com/wp-content/uploads/2021/01/ENS210.pdf // // Implementation based on: // https://github.com/maarten-pennings/ENS210 // https://github.com/sciosense/ENS210_driver #include "ens210.h" #include "esphome/core/log.h" #include "esphome/core/hal.h" namespace esphome { namespace ens210 { static const char *const TAG = "ens210"; // ENS210 chip constants static const uint8_t ENS210_BOOTING_MS = 2; // Booting time in ms (also after reset, or going to high power) static const uint8_t ENS210_SINGLE_MEASURMENT_CONVERSION_TIME_MS = 130; // Conversion time in ms for single shot T/H measurement static const uint16_t ENS210_PART_ID = 0x0210; // The expected part id of the ENS210 // Addresses of the ENS210 registers static const uint8_t ENS210_REGISTER_PART_ID = 0x00; static const uint8_t ENS210_REGISTER_UID = 0x04; static const uint8_t ENS210_REGISTER_SYS_CTRL = 0x10; static const uint8_t ENS210_REGISTER_SYS_STAT = 0x11; static const uint8_t ENS210_REGISTER_SENS_RUN = 0x21; static const uint8_t ENS210_REGISTER_SENS_START = 0x22; static const uint8_t ENS210_REGISTER_SENS_STOP = 0x23; static const uint8_t ENS210_REGISTER_SENS_STAT = 0x24; static const uint8_t ENS210_REGISTER_T_VAL = 0x30; static const uint8_t ENS210_REGISTER_H_VAL = 0x33; // CRC-7 constants static const uint8_t CRC7_WIDTH = 7; // A 7 bits CRC has polynomial of 7th order, which has 8 terms static const uint8_t CRC7_POLY = 0x89; // The 8 coefficients of the polynomial static const uint8_t CRC7_IVEC = 0x7F; // Initial vector has all 7 bits high // Payload data constants static const uint8_t DATA7_WIDTH = 17; static const uint32_t DATA7_MASK = ((1UL << DATA7_WIDTH) - 1); // 0b 0 1111 1111 1111 1111 static const uint32_t DATA7_MSB = (1UL << (DATA7_WIDTH - 1)); // 0b 1 0000 0000 0000 0000 // Converts a status to a human readable string static const LogString *ens210_status_to_human(int status) { switch (status) { case ENS210Component::ENS210_STATUS_I2C_ERROR: return LOG_STR("I2C error - communication with ENS210 failed!"); case ENS210Component::ENS210_STATUS_CRC_ERROR: return LOG_STR("CRC error"); case ENS210Component::ENS210_STATUS_INVALID: return LOG_STR("Invalid data"); case ENS210Component::ENS210_STATUS_OK: return LOG_STR("Status OK"); case ENS210Component::ENS210_WRONG_CHIP_ID: return LOG_STR("ENS210 has wrong chip ID! Is it a ENS210?"); default: return LOG_STR("Unknown"); } } // Compute the CRC-7 of 'value' (should only have 17 bits) // https://en.wikipedia.org/wiki/Cyclic_redundancy_check#Computation static uint32_t crc7(uint32_t value) { // Setup polynomial uint32_t polynomial = CRC7_POLY; // Align polynomial with data polynomial = polynomial << (DATA7_WIDTH - CRC7_WIDTH - 1); // Loop variable (indicates which bit to test, start with highest) uint32_t bit = DATA7_MSB; // Make room for CRC value value = value << CRC7_WIDTH; bit = bit << CRC7_WIDTH; polynomial = polynomial << CRC7_WIDTH; // Insert initial vector value |= CRC7_IVEC; // Apply division until all bits done while (bit & (DATA7_MASK << CRC7_WIDTH)) { if (bit & value) value ^= polynomial; bit >>= 1; polynomial >>= 1; } return value; } void ENS210Component::setup() { ESP_LOGCONFIG(TAG, "Setting up ENS210..."); uint8_t data[2]; uint16_t part_id = 0; // Reset if (!this->write_byte(ENS210_REGISTER_SYS_CTRL, 0x80)) { this->write_byte(ENS210_REGISTER_SYS_CTRL, 0x80); this->error_code_ = ENS210_STATUS_I2C_ERROR; this->mark_failed(); return; } // Wait to boot after reset delay(ENS210_BOOTING_MS); // Must disable low power to read PART_ID if (!set_low_power_(false)) { // Try to go back to default mode (low power enabled) set_low_power_(true); this->error_code_ = ENS210_STATUS_I2C_ERROR; this->mark_failed(); return; } // Read the PART_ID if (!this->read_bytes(ENS210_REGISTER_PART_ID, data, 2)) { // Try to go back to default mode (low power enabled) set_low_power_(true); this->error_code_ = ENS210_STATUS_I2C_ERROR; this->mark_failed(); return; } // Pack bytes into partid part_id = data[1] * 256U + data[0] * 1U; // Check expected part id of the ENS210 if (part_id != ENS210_PART_ID) { this->error_code_ = ENS210_WRONG_CHIP_ID; this->mark_failed(); } // Set default power mode (low power enabled) set_low_power_(true); } void ENS210Component::dump_config() { ESP_LOGCONFIG(TAG, "ENS210:"); LOG_I2C_DEVICE(this); if (this->is_failed()) { ESP_LOGE(TAG, "%s", LOG_STR_ARG(ens210_status_to_human(this->error_code_))); } LOG_UPDATE_INTERVAL(this); LOG_SENSOR(" ", "Temperature", this->temperature_sensor_); LOG_SENSOR(" ", "Humidity", this->humidity_sensor_); } float ENS210Component::get_setup_priority() const { return setup_priority::DATA; } void ENS210Component::update() { // Execute a single measurement if (!this->write_byte(ENS210_REGISTER_SENS_RUN, 0x00)) { ESP_LOGE(TAG, "Starting single measurement failed!"); this->status_set_warning(); return; } // Trigger measurement if (!this->write_byte(ENS210_REGISTER_SENS_START, 0x03)) { ESP_LOGE(TAG, "Trigger of measurement failed!"); this->status_set_warning(); return; } // Wait for measurement to complete this->set_timeout("data", uint32_t(ENS210_SINGLE_MEASURMENT_CONVERSION_TIME_MS), [this]() { int temperature_data, temperature_status, humidity_data, humidity_status; uint8_t data[6]; uint32_t h_val_data, t_val_data; // Set default status for early bail out temperature_status = ENS210_STATUS_I2C_ERROR; humidity_status = ENS210_STATUS_I2C_ERROR; // Read T_VAL and H_VAL if (!this->read_bytes(ENS210_REGISTER_T_VAL, data, 6)) { ESP_LOGE(TAG, "Communication with ENS210 failed!"); this->status_set_warning(); return; } // Pack bytes for humidity h_val_data = (uint32_t)((uint32_t) data[5] << 16 | (uint32_t) data[4] << 8 | (uint32_t) data[3]); // Extract humidity data and update the status extract_measurement_(h_val_data, &humidity_data, &humidity_status); if (humidity_status == ENS210_STATUS_OK) { if (this->humidity_sensor_ != nullptr) { float humidity = (humidity_data & 0xFFFF) / 512.0; this->humidity_sensor_->publish_state(humidity); } } else { ESP_LOGW(TAG, "Humidity status failure: %s", LOG_STR_ARG(ens210_status_to_human(humidity_status))); this->status_set_warning(); return; } // Pack bytes for temperature t_val_data = (uint32_t)((uint32_t) data[2] << 16 | (uint32_t) data[1] << 8 | (uint32_t) data[0]); // Extract temperature data and update the status extract_measurement_(t_val_data, &temperature_data, &temperature_status); if (temperature_status == ENS210_STATUS_OK) { if (this->temperature_sensor_ != nullptr) { // Temperature in Celsius float temperature = (temperature_data & 0xFFFF) / 64.0 - 27315L / 100.0; this->temperature_sensor_->publish_state(temperature); } } else { ESP_LOGW(TAG, "Temperature status failure: %s", LOG_STR_ARG(ens210_status_to_human(temperature_status))); } }); } // Extracts measurement 'data' and 'status' from a 'val' obtained from measurement. void ENS210Component::extract_measurement_(uint32_t val, int *data, int *status) { *data = (val >> 0) & 0xffff; int valid = (val >> 16) & 0x1; uint32_t crc = (val >> 17) & 0x7f; uint32_t payload = (val >> 0) & 0x1ffff; // Check CRC uint8_t crc_ok = crc7(payload) == crc; if (!crc_ok) { *status = ENS210_STATUS_CRC_ERROR; } else if (!valid) { *status = ENS210_STATUS_INVALID; } else { *status = ENS210_STATUS_OK; } } // Sets ENS210 to low (true) or high (false) power. Returns false on I2C problems. bool ENS210Component::set_low_power_(bool enable) { uint8_t low_power_cmd = enable ? 0x01 : 0x00; ESP_LOGD(TAG, "Enable low power: %s", enable ? "true" : "false"); bool result = this->write_byte(ENS210_REGISTER_SYS_CTRL, low_power_cmd); delay(ENS210_BOOTING_MS); return result; } } // namespace ens210 } // namespace esphome